首页 | 本学科首页   官方微博 | 高级检索  
     


Fatigue fracture of nylon polymers
Authors:M G Wyzgoski  G E Novak
Affiliation:(1) Polymers Department, General Motors Research Laboratories, 48090 Warren, MI, USA
Abstract:The influence of glass fibres on the fatigue crack propagation rates of injection-moulded nylons has been determined. In contrast to previous results for unreinforced nylons, the cracking kinetics are independent of the oscillating load frequency. The fact that the crack growth rate per cycle is constant, when expressed in terms of the time under load, demonstrates that the contribution of creep crack extension is minimized by the glass fibres. Thus a true fatigue process is suggested for the fatigue fracture of the reinforced system, even when the glass fibres are preferentially aligned parallel to the crack growth direction. A complicating factor in characterizing the fatigue resistance of the glass-reinforced nylons is the tremendous influence of fibre orientation on crack growth rate. It is shown that the anisotropy problem can be handled by simply expressing the crack growth rate data in terms of the strain energy release rate rather than the usual stress intensity factor representation. Results for four different glass-filled nylons show that the diverse crack growth rates for cracking parallel versus perpendicular to the glass-fibre axes collapse on to individual strain energy release rate curves. Each single relationship therefore characterizes the fatigue fracture of the filled material and furthermore permits a prediction of the cracking rates for any glass-fibre orientation based upon the expected change in modulus. Finally it is demonstrated that the increased stress dependence of fatigue crack propagation (slope of the Paris plot) in filled nylons can be duplicated in unfilled samples under certain conditions. It is concluded that the fatigue fracture mechanism is matrix dominated in these chopped glass-fibre reinforced materials.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号