首页 | 本学科首页   官方微博 | 高级检索  
     


Stokes resistance of a porous spherical particle in a spherical cavity
Authors:H. H. Sherief  M. S. Faltas  E. I. Saad
Abstract:The boundary effect on the asymmetrical motion of a porous spherical particle in an eccentricspherical cavity is investigated in the quasi-steady limit under creeping flow conditions. The porous particletranslates and rotates in the viscous fluid, located within the spherical cavity, normal to the line connectingtheir centers. The fluid inside the porous particle is governed by the Brinkman equation. A tangential stressjump condition at the interface between the fluid and the porous particle is applied. A semi-analytical approachbased on a collocation technique is used. Due to the linearity of the present problem, the flow variables for theclear fluid region are constructed by superposing basic solutions of two problems: the first one is the regularsolution inside the cavity region in the absence of the porous particle where a first system of coordinates has itsorigin at the center of the cavity, while the second problem is the regular solution in the infinite region outsidethe spherical porous particle where a second coordinate system with its origin at the center of the porousparticle is used. Numerical results displaying the resistance coefficients acting on the particle are obtainedwith good convergence for various values of the physical parameters of the problem. The results are tabulatedand represented graphically. The findings demonstrate that the collocation results of the resistance coefficientsare in good agreement with the corresponding results for the impermeable solid particle.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号