首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工免疫的故障检测及诊断模型
引用本文:陈强 李湘萍 谢闯. 基于人工免疫的故障检测及诊断模型[J]. 南方冶金学院学报, 2005, 26(3): 31-36,50
作者姓名:陈强 李湘萍 谢闯
作者单位:[1]江西理工大学机电工程学院,江西赣州341000 [2]江西理工大学继续教育学院,江西赣州341000 [3]江西理工大学实习工厂,江西赣州341000
摘    要:提出了一种基于人工免疫的故障诊断进化学习模型及其相应的算法,通过对检测对象正常工作状态下获得的自己模式串的阴性选择,随机产生初始检测器;用基于人工免疫的进化学习机制实现对检测对象异常工作状态下获得的非己模式串的学习和记忆利用进化学习结果和系统故障信息库知识区分和标记不同故障在状态空间上对应的区域,应用于机床齿轮箱故障检测和诊断问题,实验结果表明了所提出方法的有效性。

关 键 词:人工免疫 进化学习 异常检测 故障诊断
文章编号:1007-1229(2005)03-0031-06
修稿时间:2005-01-05

A Model For Detection and Diagnosis of Fault based on Artificial Immune Theory
CHEN Qiang,LI Xiang-ping,XIE Chuang. A Model For Detection and Diagnosis of Fault based on Artificial Immune Theory[J]. Journal of Southern Institute of Metallurgy, 2005, 26(3): 31-36,50
Authors:CHEN Qiang  LI Xiang-ping  XIE Chuang
Affiliation:CHEN Qiang1,LI Xiang-ping2,XIE Chuang3
Abstract:A evolutional learning model for detection and diagnosis of fault based on artificial immune theory is proposed. Initial detectors is produced at random combining reversed selection of self patterns which responses normal working situation of detecting object. Learning and memory of non-self patterns is realized with using mechanism of evolution leaning based on artificial immune theory. The Corresponding Zones of different faults on states space are distinguished and marked with the results of evolution learning and information warehouse of faults . Appling the methods to detection and diagnosis for faults of gear case of machine tools, the experiment results indicate that the method is effective.
Keywords:artificial immune  evolution and learning  anomaly detection  fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号