首页 | 本学科首页   官方微博 | 高级检索  
     


Crack Growth Resistance of Hybrid Fiber-Reinforced Cement Matrix Composites
Authors:Ying Chen  Pizhong Qiao
Affiliation:1Postdoctoral Fellow, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, and College of Water Conservancy and Hydropower Engineering, Hohai Univ., Nanjing, 210098, P. R. China; formerly, Associate Professor, Dept. of Civil Engineering, Shandong Univ., Jinan, 250061, P. R. China.
2Professor, Dept. of Civil and Environmental Engineering, Washington State Univ., Pullman, WA 99164-2910; and Cheung Kong Scholar, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai Univ., Nanjing, 210098, P. R. China (corresponding author). E-mail: qiao@wsu.edu
Abstract:The effect of hybrid fiber reinforcement on fracture energy and crack propagation in cement matrix composites is examined. The crack in cement matrix composites is allowed to fracture under mode-I loading with three-point bending beam specimens. The influence of fiber types and their combination is quantified by using the toughness index and fracture energy. A proper hybrid combination of steel fibers and polyvinyl alcohol microfibers enhances the resistance to both the nucleation and growth of the crack. The micromechanical model of hybrid composites by using a fiber bridging law is emphasized, and the numerical model prediction closely matches the behavior obtained from the experiment. The influencing role of the material parameters in the fracture tests (e.g., the fracture toughness index and fracture energy) becomes more apparent than ones used in some conventional strength-based or fiber pullout tests, and these fracture parameters could screen the effect of fiber/microfiber reinforcement in enhancing the crack growth resistance of cementitious composites. This study demonstrates that fundamental fracture tests are effective to characterize and develop high-performance hybrid fiber–reinforced cement matrix composites.
Keywords:Cement  Concrete  Steel fibers  Cracking  Polymer  Reinforcement  Synthetic materials  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号