首页 | 本学科首页   官方微博 | 高级检索  
     


A large scale parallel fluid-structure interaction computing platform for simulating structural responses to a detonation shock
Authors:Sen Zhang  Xiao-Wei Guo  Chao Li  Yi Liu  Sijiang Fan  Ran Zhao  Canqun Yang
Affiliation:Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, People's Republic of China
Abstract:Due to the intrinsic nature of multi-physics, it is prohibitively complex to design and implement a simulation software platform for study of structural responses to a detonation shock. In this article, a partitioned fluid-structure interaction computing platform is designed for parallel simulating structural responses to a detonation shock. The detonation and wave propagation are modeled in an open-source multi-component solver based on OpenFOAM and blastFoam, and the structural responses are simulated through the finite element library deal.II. To capture the interaction dynamics between the fluid and the structure, both solvers are adapted to preCICE. For improving the parallel performance of the computing platform, the inter-solver data is exchanged by peer-to-peer communications and the intermediate server in conventional multi-physics software is eliminated. Furthermore, the coupled solver with detonation support has been deployed on a computing cluster after considering the distributed data storage and load-balancing between solvers. The 3D numerical result of structural responses to a detonation shock is presented and analyzed. On 256 processor cores, the speedup ratio of the simulations for a detonation shock reach 178.0 with 5.1 million of mesh cells and the parallel efficiency achieve 69.5%. The results demonstrate good potential of massively parallel simulations. Overall, a general-purpose fluid-structure interaction software platform with detonation support is proposed by integrating open source codes. And this work has important practical significance for engineering application in fields of construction blasting, mining, and so forth.
Keywords:FSI  high-explosive detonation  HPC  numerical simulation  OpenFOAM  preCICE
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号