首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and characterization of PES/PSF/PEG by immersion precipitation for Mediterranean seawater desalination by FO membrane
Authors:Mai Ali Hassen  Gehad Hamdy  Rania M Sabry  Sahar S Ali  Fatma A Taher
Affiliation:1. Faculty of science, Al-Azhar University (Girls), Nasr City, Egypt;2. Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Nasr City, Egypt;3. Chemical Engineering and Pilot-Plant Department, National Research Center, Dokki, Egypt
Abstract:In the present study, a simple, inexpensive, nontoxic, and environmentally friendly polyethylene glycol (PEG) polymer was used to enhance the hydrophilicity of the forward osmosis (FO) membrane using various PEG concentrations as a pore forming agent in the casting solution of polyethersulfone/polysulfone (PES/PSF) blend membranes. A nonwoven PES/PSF FO blend membrane was fabricated via the immersion precipitation phase inversion technique. The membrane dope solution was cast on polyethylene terephthalate (PET) nonwoven fabric. The results revealed that PEG is a pore forming agent and that adding PEG promotes membrane hydrophilicity. The membrane with 1 wt% PEG (PEG1) had about 27% lower contact angle than the pristine blend membrane. The PEG1 membrane has less tortuosity (which reduces from 3.4–2.73), resulting in a smaller structure parameter (S value) of 277 μm, due to the presence of open pores on the bottom surface structure, which results in diminished ICP. Using 1 M NaCl as the draw solution and distilled water as the feed solution, the PEG1 membrane exhibited higher water flux (136 L m?2 h?1) and lower reverse salt flux (1.94 g m?2 h?1). Also, the selectivity of the membrane, specific reverse salt flux, (Js/Jw) showed lower values (0.014 g/L). Actually, the PEG1 membrane has a 34.6% higher water flux than the commercial nonwoven-cellulose triacetate (NW-CTA) membrane. By means of varied concentrations of NaCl salt solution (0.6, 1, 1.5, and 2 M), the membrane with 1 wt% PEG showed improved FO separation performance with permeate water fluxes of 108, 136, 142, and 163 L m?2 h?1. In this work, we extend a promising gate for designing fast water flux PES/PSF/PEG FO blend membranes for water desalination.
Keywords:blend membranes  forward osmosis  Polyethersulfone  polyethylene glycol  Polysulfone
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号