首页 | 本学科首页   官方微博 | 高级检索  
     


Finite heterogeneous element method using sliced microstructures for linear elastic analysis
Authors:Yoshiro Suzuki
Affiliation:Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, , Meguro–ku, Tokyo 152–8552, Japan
Abstract:A new finite heterogeneous element consisting of sliced microstructures (FHES) is applied in a multi?scale technique. The FHES represents a heterogeneous material with microscopic constituents without homogenization or microscopic finite element analysis. A representative volume element extracted from a heterogeneous structure is thinly sliced. Each slice is modeled as a combined spring to calculate properties of the FHES. Each FHES has the same number of nodes as an ordinary finite element, and the macroscopic analysis cost is the same as that for ordinary finite element analysis. However, the FHES retains information about the microscopic material layout (i.e., the distribution of a material's property) in itself that is lost during homogenization. In the proposed approach, materials are not homogenized. The FHES does not have a constant (homogenized) material property and can ‘change stiffness’ depending on its deformation behavior. This reduces error due to coarse?graining and allows us to calculate the macroscopic deformation behavior with sufficient accuracy even if a large gradient of strain is generated in the macroscopic field. The novelty of the research is the development of rational heterogeneous finite elements. The paper presents the theory behind the FHES and its practical application to a linear elastic problem. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:multi‒  scale  finite element methods  elasticity  homogenization method  heterogeneous material
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号