摘 要: | 在跨孤岛联邦学习中,各参与者对最终训练出的模型贡献各异,如何评估他们的贡献并给予适当激励,成为联邦学习研究中一项关键问题。目前的激励方法主要着眼于奖励有效模型更新的参与者,同时惩罚不诚实者,侧重于激励计算行为。然而,参与者所提供的数据质量同样影响学习效果,但现有方法未充分考虑数据质量,并缺乏鉴定数据真实性的手段。为提升激励的准确性,需对参与者数据质量进行评估。通过融合零知识证明与区块链技术,文章提出一种评估参与者数据质量的协议,构建了全新联邦学习激励方案。该方案可在不泄露明文数据的前提下,评估参与者所用数据集质量,通过区块链系统向合格参与者发放激励,拒绝不合格者。实验证实,在部分用户提供虚假数据的情况下,该方案仍能准确给出激励结果,同时提升联邦学习模型的准确率。
|