首页 | 本学科首页   官方微博 | 高级检索  
     


Vacuum‐assisted resin transfer molding model
Authors:Richard S Parnas  Shawn M Walsh
Abstract:A model of the vacuum‐assisted resin transfer molding (VARTM) process is developed that includes the most important aspects of the processing physics. The model consists of several submodels, such as preform mechanics, Darcy flow, wicking flow, and void formation. The preform mechanics model treats the preform as a linearly elastic, one‐dimensional (1D) solid. However, the key physical process is the lubrication of the preform due to fluid wetting, and this is modeled as a reduction in preform modulus, an easily measurable parameter. Residual stress, three‐dimensional (3D) structural behavior, and nonlinearity are neglected, but can all be included. The fluid flow model of capillary wicking is not tacked onto the Darcy equation as a modified boundary condition, as was previously done. The wicking is treated simply, but more realistically, by performing a force balance on the fluid in a pore. Balancing the capillary pressure and the viscous drag allows the development of a wicking front that precedes the main Darcy flow front to an extent that depends on several easily measurable factors. It is this wicking front that is responsible for the small void formation that reduces the quality of VARTM parts, relative to resin transfer molding (RTM) parts. POLYM. COMPOS. 26:477–485, 2005. © 2005 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号