首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical,dynamic mechanical properties and thermal stability of fluorocarbon elastomer–liquid crystalline polymer blends
Authors:E Shiva Kumar  CK Das
Abstract:Blends of fluorocarbon elastomer (FKM) and liquid crystalline polymer (LCP) have been prepared by the melt mixing technique. Processing studies indicated the increase in viscosity with the addition of LCP. The tensile strength, tear strength, and modulus of the elastomer are greatly improved by the addition of the LCP. Dynamic mechanical analysis (DMA) results showed that the shift in the glass transition temperature (Tg) of the elastomer with the addition of LCP and the storage modulus of the blends increased above the Tg of FKM, whereas decreases below the Tg of the elastomer were seen with up to 20 wt% LCP; this suggests that the LCP acts as an effective reinforcing agent above the Tg of FKM. From the thermogravimetric analysis (TGA) and differential thermogravimetry (DTG), we found that the thermal stability of the elastomer enhances by blending with the LCP. The weight loss and the weight loss rate of the FKM decrease enormously with the addition of LCP. From the X‐ray diffraction (XRD) study, it has been observed that the LCP acts as a nucleating agent by increasing the crystallinity of the blend. The failure mechanism of the blends was studied using a scanning electron microscope (SEM). It suggested that the failure occurred in the blends; mainly due to the pull out of the fibrils from the matrix phase and due to lower interfacial adhesion between the LCP phase and the elastomer. POLYM. COMPOS. 26:306–315, 2005. © 2005 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号