首页 | 本学科首页   官方微博 | 高级检索  
     


PEM Fuel Cell Stack Cold Start Thermal Model
Authors:M. Sundaresan  R. M. Moore
Abstract:For passenger fuel cell vehicles (FCVs), customers will expect to start the vehicle and drive almost immediately, implying a very short system warmup to full power. While hybridization strategies may fulfill this expectation, the extent of hybridization will be dictated by the time required for the fuel cell system to reach normal operating temperatures. Quick‐starting fuel cell systems are impeded by two problems: (i) the freezing of residual water or water generated by starting the stack at below freezing temperatures and (ii) temperature‐dependent fuel cell performance, improving as the temperature reaches the normal range. Cold start models exist in the literature; however, there does not appear to be a model that fully captures the thermal characteristics of the stack during sub‐freezing startup conditions. Existing models lack the following features: (i) modeling of stack internal heating methods (other than stack reactions) and their impact on the stack temperature distribution and (ii) modeling of endplate thermal mass effect on end cells and its impact on the stack temperature distribution. Unlike a lumped model, which may use a single temperature as an indicator of the stack's thermal condition, a model considering individual cell layers can reveal the effect of the endplate thermal mass on the end cells, and accommodate the evaluation of internal heating methods that may mitigate this effect. This paper presents and discusses results from simulations performed with a new, layered model.
Keywords:Cold Start  Polymer Electrolyte Fuel Cell  Temperature Distribution  Thermal Model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号