首页 | 本学科首页   官方微博 | 高级检索  
     


Error performance of optically preamplified hybrid BPSK-PPM systems with transmitter and receiver imperfections
Authors:Email author" target="_blank">Taha?LandolsiEmail author  Aly?F?Elrefaie    Mohamed?S?Hassan
Affiliation:1.American University of Sharjah,Sharjah,United Arab Emirates;2.W & Wsens Devices,Los Altos,USA;3.School of Electronic and Electrical Engineering,University of Leeds,Leeds,UK
Abstract:In this paper, we investigate the impact of the transmitter finite extinction ratio and the receiver carrier recovery phase offset on the error performance of two optically preamplified hybrid M-ary pulse position modulation (PPM) systems with coherent detection. The first system, referred to as PB-mPPM, combines polarization division multiplexing (PDM) with binary phase-shift keying and M-ary PPM, and the other system, referred to as PQ-mPPM, combines PDM with quadrature phase-shift keying and M-ary PPM. We provide new expressions for the probability of bit error for PB-mPPM and PQ-mPPM under finite extinction ratios and phase offset. The extinction ratio study indicates that the coherent systems PB-mPPM and PQ-mPPM outperform the direct-detection ones. It also shows that at \(P_b=10^{-9}\) PB-mPPM has a slight advantage over PQ-mPPM. For example, for a symbol size \(M=16\) and extinction ratio \(r=30\) dB, PB-mPPM requires 0.6 dB less SNR per bit than PQ-mPPM to achieve \(P_b=10^{-9}\). This investigation demonstrates that PB-mPPM is less complex and less sensitive to the variations of the offset angle \(\theta \) than PQ-mPPM. For instance, for \(M=16\), \(r=30\) dB, and \(\theta =10^{\circ }\) PB-mPPM requires 1.6 dB less than PQ-mPPM to achieve \(P_b=10^{-9}\). However, PB-mPPM enhanced robustness to phase offset comes at the expense of a reduced bandwidth efficiency when compared to PQ-mPPM. For example, for \(M=2\) its bandwidth efficiency is 60 % that of PQ-mPPM and \(\approx 86\,\%\) for \(M=1024\). For these reasons, PB-mPPM can be considered a reasonable design trade-off for M-ary PPM systems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号