首页 | 本学科首页   官方微博 | 高级检索  
     


Piecewise Maximal Similarity for Ad-hoc Social Networks
Authors:Sapna?Gambhir,Nagender?Aneja  author-information"  >  author-information__contact u-icon-before"  >  mailto:naneja@gmail.com"   title="  naneja@gmail.com"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile,Liyanage?Chandratilake?De Silva
Affiliation:1.Department of Computer Engineering,YMCA University of Science and Technology,Faridabad,India;2.Faculty of Integrated Technologies,Universiti Brunei Darussalam,Gadong,Brunei Darussalam
Abstract:Computing Profile Similarity is a fundamental requirement in the area of Social Networks to suggest similar social connections that have high chance of being accepted as actual connection. Representing and measuring similarity appropriately is a pursuit of many researchers. Cosine similarity is a widely used metric that is simple and effective. This paper provides analysis of cosine similarity for social profiles and proposes a novel method to compute Piecewise Maximal Similarity between profiles. The proposed metric is 6% more effective to measure similarity than cosine similarity based on computations on real data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号