首页 | 本学科首页   官方微博 | 高级检索  
     


Caffeine demethylation monitoring using a transdermal sweat patch
Authors:T Delahunty  D Schoendorfer
Affiliation:Department of Nephrology, INSERM U 90, Necker Hospital, Paris, France.
Abstract:Biofilms consist of microorganisms immobilized at a substratum surface embedded in an organic polymer matrix of bacterial origin. Tubing drawn from the fluid pathways within dialysis machines of various models were investigated for biofilm. Scanning electron microscopy (SEM), performed on approximately 2 cm2 samples of the tubing inner surfaces revealed that the inner surfaces of the tubing were covered with biofilms consisting of numerous deposits and glycocalix at different stages of formation with components containing bacteria and algae. Evaluations of biomass were performed from tubing sections of various lengths and inner diameters put in tubes containing water for injection and immersed in an ultrasound washtub for 1 h to ensure sloughing of the biofilm. Living bacteria were identified by plating on nutrient agar media and incubation for 48 h at 37 degrees C. Epifluorescent stains were used for the total bacteria count. Lipopolysaccharide levels were determined by the endotoxin activity measurements. Polyoside contents were determined by the colometric method, and the chemical oxygen demand was measured to evaluate the amount of organic substance. Biofilms detached from tubing samples drawn from the water path, bicarbonate path, and fresh dialysate path within dialysis machines contained approximately 1.10(3)-1.10(6) total bacteria/cm2, yet only some living bacteria were found. Endotoxin levels ranged from 1 to 12 EU/cm2. In contrast in the dialysate fluid, no bacteria were found, and the endotoxin content was under the detection level of the method. The polyoside content and chemical oxygen demand of the biomass ranged from 11 to 83 microg/cm2 and from 53 to 234 mg/cm2, respectively. It is concluded that a germ- and endotoxin-free dialysate does not exclude the risks and hazards of bacteria and endotoxin discharge from biofilm developed on the fluid pathway tubing, acting as a reservoir for continuous contamination, and efforts in the optimization of cleaning and disinfection procedures used for hemodialysis systems should aim to detach and neutralize biofilm when necessary.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号