首页 | 本学科首页   官方微博 | 高级检索  
     

关于学习空间及分类风险评价的非单调一致性
引用本文:何劲松. 关于学习空间及分类风险评价的非单调一致性[J]. 计算机学报, 2007, 30(2): 168-175
作者姓名:何劲松
作者单位:中国科学技术大学多媒体计算与通信教育部-微软重点实验室,合肥,230027;中国科学技术大学自然计算与应用实验室,合肥,230027;中国科学技术大学电子科学与技术系,合肥,230027
基金项目:教育部重点实验室基金 , 国家自然科学基金
摘    要:允许经验风险不为0是现代模式分类器构造方法区别于传统模式分类器构造方法的标志.为了进一步研究分类器构造观点的变化对模式分类系统所产生的更深入的影响,拓展模式分类系统的学习空间,作者讨论了限制经验风险必须为0的传统模式分类系统在分类性能问题上所受的限制,分析了影响模式分类系统分类性能的关键因素,给出了学习空间可拓展的必要条件,并构造了一种投机学习方法,证明了学习空间可拓展的充分条件.同时,在实验中观察到,分类器评价与测试集上的分类风险是非一致单调的.这一结论对于模式识别及其应用研究是严峻的.

关 键 词:模式分类  机器学习  特征选择  混合学习  经验风险  实际风险
修稿时间:2005-09-132006-08-27

About Learning Space and Non-Monotonicity in Assessment of Classification Risk
HE Jing-Song. About Learning Space and Non-Monotonicity in Assessment of Classification Risk[J]. Chinese Journal of Computers, 2007, 30(2): 168-175
Authors:HE Jing-Song
Affiliation:MOE-Microso ft Key Laboratory of Multimedia Computing and Communication, University of Science and Technology of China, He f ei 230026;Nature Inspired Computation and Application Laboratory, University of Science and Technology of China, Hefei 230026;Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026
Abstract:The characteristic of modern pattern classification methods is to admit empirical risk non-zero, whereas inseparable feature set never provides a chance for learning algorithms to make a classifier with zero of empirical risk. In order to investigate the potential connection between inseparable feature set, which is usually thought as trustless on intuition, and the modern idea on learning problem, this paper argues the necessary condition of the availability of inseparable feature set, by which elaborates an opportunistic learning method to validate the sufficient condition experimentally. Experimental evidences show that inseparable feature subset can make important contributions for improving the performance of pattern classifier. Further more, the relation between the assessment of classification and the predictive performance on test set is proved to be non-monotone in experiments. Both the analytical results and experimental studies reflect that this conclusion may be a challenge to pattern classification and its applications in the future.
Keywords:pattern classification  machine learning  feature selection  hybrid learning  empirical risk  practical risk
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号