首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanising a Type-Safe Model of Multithreaded Java with a Verified Compiler
Authors:Andreas Lochbihler
Affiliation:1.Institut für Informationssicherheit, Departement für Informatik,ETH Zürich,Zurich,Switzerland
Abstract:This article presents JinjaThreads, a unified, type-safe model of multithreaded Java source code and bytecode formalised in the proof assistant Isabelle/HOL. The semantics strictly separates sequential aspects from multithreading features like locks, forks and joins, interrupts, and the wait-notify mechanism. This separation yields an interleaving framework and a notion of deadlocks that are independent of the language, and makes the type safety proofs modular. JinjaThreads’s non-optimising compiler translates source code into bytecode. Its correctness proof guarantees that the generated bytecode exhibits exactly the same observable behaviours as the source code, even for infinite executions and under the Java memory model. The semantics and the compiler are executable. JinjaThreads builds on and reuses the Java formalisations Jinja, Bali, \(\mu \)Java, and Java\(^{\ell ight}\) by Nipkow’s group. Being the result of more than fifteen years of studying Java in Isabelle/HOL, it constitutes a large and long-lasting case study. It shows that fairly standard formalisation techniques scale well and highlights the challenges, benefits, and drawbacks of formalisation reuse.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号