首页 | 本学科首页   官方微博 | 高级检索  
     


In-reactor investigations of the creep of structural materials
Authors:M. G. Bul'kanov  A. S. Kruglov  Yu. M. Pevchikh  V. M. Troyarnov
Abstract:Conclusions 1. A series of in-reactor tests was performed on a sample used to study radiation creep in 00X16H15M3B steel, XHM1 chrome-nickel alloy, the zirconium based alloys é110 and é635, and the vanadium-based alloy BTX8. The radiation creep modulus (in units of Pa−1·(displacements/atom)−1 equals 1.7·10−11 for 00X16H15M3B steel, 4.6·10−11 for XHM alloy with fluence up to 2.3·1020 cm−2 and 1.6·10−11 for a fluence above 1·1021 cm−2, (4.6–4.9)·10−11 for é110 alloy, and 1.8·10−11 for é635 alloy. For the alloy BTX8, at stresses below half the yield point and t=450°C, the modulus equals 3.3·10−12 Pa−1·(displacements/atom)−1. At a higher stress, the deformation rate of the alloy increases progressively. 2. In the investigation of the temperature dependence of in-reactor creep of the alloy é110, it was found that at 350–370°C and higher, the thermal creep makes the predominant contribution to deformation. In the experimental range 370–455°C, the thermal activation energy of in-reactor creep was determined to be 36 ± 8 kcal/(g·atom). At temperatures below 350°C the creep of the alloy é110 is a temperature-independent radiation-stimulated process. 3. In the case of tests of zirconium alloys, a previously unobserved phenomenon of periodic rapid deformation of the material against the background of creep at stresses even well below the yield point of the irradiated material was discovered. The effect was manifested at a temperature of about 230°C. As the temperature increases up to 290°C and higher, no plastic movements are observed. Translated from Atomnaya énergiya, Vol. 80, No. 5, pp. 386–391, May, 1996.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号