首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊集的蚁群聚类算法的改进
引用本文:蒋志为,陶宏才,白学祥. 基于模糊集的蚁群聚类算法的改进[J]. 计算机应用, 2006, 26(8): 1950-1952
作者姓名:蒋志为  陶宏才  白学祥
作者单位:西南交通大学,信息科学与技术学院,四川,成都,610031;四川省电力公司,四川,成都,610041
摘    要:改进了LF算法,提出了一种基于模糊集理论的蚁群聚类新方法。首先定义了平均距离,其次在“相似”的概念上引入模糊集理论,定义了数据对象与其邻域内对象相似程度的隶属函数,最后该数据对象的拾起或放下由隶属度与置信水平λ相比较来决定。该算法避免了LF算法中不相似的数据对象本该被拾起而可能未被拾起,相似的数据对象本该被放下而可能未被放下的弊端,并简化了LF算法。

关 键 词:聚类  模糊集  蚁群算法
文章编号:1001-9081(2006)08-1950-03
收稿时间:2006-02-24
修稿时间:2006-02-242006-05-26

Improvement of fuzzy-set-based ant colony clustering algorithm
JIANG Zhi-wei,TAO Hong-cai,BAI Xue-xiang. Improvement of fuzzy-set-based ant colony clustering algorithm[J]. Journal of Computer Applications, 2006, 26(8): 1950-1952
Authors:JIANG Zhi-wei  TAO Hong-cai  BAI Xue-xiang
Affiliation:1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu Sichuan 610031, China; 2. Sichuan Electric Power Corporation, Chengdu Sichuan 610041, China
Abstract:LF algorithm was improved and a new method of ant colony clustering based on fuzzy set theory was put forward. Firstly, the average distance was defined. Then, fuzzy set theory was introduced into the concept of similarity, and the membership function of similar degree between a data object and its neighbor was defined. Finally, the pickup or drop of this data object was determined by the comparison between degree of membership and confidence level λ.The new method overcomes such shortcomings in LF algorithm as that dissimilar data object may not be picked up and similar data object may not be dropped, and simplifies LF algorithm.
Keywords:clustering   fuzzy set   ant colony algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号