首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamical systems and topology optimization
Authors:Anders Klarbring  Bo Torstenfelt
Affiliation:1. Division of Mechanics, Institute of Technology, Link?ping University, SE, 581 83, Link?ping, Sweden
2. Division of Solid Mechanics, Institute of Technology, Link?ping University, SE, 581 83, Link?ping, Sweden
Abstract:This paper uses a dynamical systems approach for studying the material distribution (density or SIMP) formulation of topology optimization of structures. Such an approach means that an ordinary differential equation, such that the objective function is decreasing along a solution trajectory of this equation, is constructed. For stiffness optimization two differential equations with this property are considered. By simple explicit Euler approximations of these equations, together with projection techniques to satisfy box constraints, we obtain different iteration formulas. One of these formulas turns out to be the classical optimality criteria algorithm, which, thus, is receiving a new interpretation and framework. Based on this finding we suggest extensions of the optimality criteria algorithm. A second important feature of the dynamical systems approach, besides the purely algorithmic one, is that it points at a connection between optimization problems and natural evolution problems such as bone remodeling and damage evolution. This connection has been hinted at previously but, in the opinion of the authors, not been clearly stated since the dynamical systems concept was missing. To give an explicit example of an evolution problem that is in this way connected to an optimization problem, we study a model of bone remodeling. Numerical examples, related to both the algorithmic issue and the issue of natural evolution represented as bone remodeling, are presented.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号