基于模糊神经网络和遗传算法的大坝安全监控模型 |
| |
引用本文: | 苏怀智,吴中如,温志萍,顾冲时. 基于模糊神经网络和遗传算法的大坝安全监控模型[J]. 水电自动化与大坝监测, 2001, 25(1): 10-12,22 |
| |
作者姓名: | 苏怀智 吴中如 温志萍 顾冲时 |
| |
作者单位: | 1. 河海大学水利水电工程学院,南京 210098 2. 南京工程学院,南京 210013 |
| |
摘 要: | 应用监控模型来监控大坝的工作性态是一条有效途径 ,但由于大坝工作条件复杂 ,影响因素繁多 ,为以精确的数学模型进行描述带来了很大的困难 ,而应采用从定性到定量的综合集成的方法 ,将专家知识、监测数据和各种信息与计算机软硬件技术结合起来 ,把坝工理论和坝工专家的经验结合起来对其进行研究。文中应用模糊神经网络和遗传算法等人工智能技术 ,依据专家的经验确定隶属函数 ,从而建立模糊神经网络预报模型 ,根据专家对实际情况的正确分析 ,对预报结果进行修正 ,达到进一步提高预报精度的目的
|
关 键 词: | 大坝 监控模型 模糊神经网络 遗传算法 |
修稿时间: | 2000-08-25 |
DAM SAFETY MONITORING MODEL BASED ON FUZZY NEURAL NETWORKAND GENETIC ALGORITHM |
| |
Abstract: | Dam performance monitoring by use of a monitoring model iseffective. Because of complicated work condition and many affecting factors, it is difficult to describe dam performance by use of a precise mathematical model. The problem is resolved by use of a qualitative and quantitative method. The method combines computer technology with experts' knowledge, monitoring data and information, and combines dam theory with experts' knowledge. A fuzzy neural network prediction model is built by use of the technologies of fuzzy neural network and genetic algorithm. According to experts' experience, a subjection degree function is established. The predicted value is corrected according to experts' analysis of actual condition,thus the precision of prediction can be improved. |
| |
Keywords: | |
本文献已被 CNKI 万方数据 等数据库收录! |
|