首页 | 本学科首页   官方微博 | 高级检索  
     


Biomechanical modeling of the human head for physically based, nonrigid image registration
Authors:Hagemann A  Rohr K  Stiehl H S  Spetzger U  Gilsbach J M
Affiliation:Universit?t Hamburg, FB Informatik, AB Kognitive Systeme, Germany. hagemann@informatik.uni-hamburg.de
Abstract:The accuracy of image-guided neurosurgery generally suffers from brain deformations due to intraoperative changes. These deformations cause significant changes of the anatomical geometry (organ shape and spatial interorgan relations), thus making intraoperative navigation based on preoperative images error prone. In order to improve the navigation accuracy, we developed a biomechanical model of the human head based on the finite element method, which can be employed for the correction of preoperative images to cope with the deformations occurring during surgical interventions. At the current stage of development, the two-dimensional (2-D) implementation of the model comprises two different materials, though the theory holds for the three-dimensional (3-D) case and is capable of dealing with an arbitrary number of different materials. For the correction of a preoperative image, a set of homologous landmarks must be specified which determine correspondences. These correspondences can be easily integrated into the model and are maintained throughout the computation of the deformation of the preoperative image. The necessary material parameter values have been determined through a comprehensive literature study. Our approach has been tested for the case of synthetic images and yields physically plausible deformation results. Additionally, we carried out registration experiments with a preoperative MR image of the human head and a corresponding postoperative image simulating an intraoperative image. We found that our approach yields good prediction results, even in the case when correspondences are given in a relatively small area of the image only.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号