A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides: expression of CYP3A4, CYP2A6, and CYP2E1 |
| |
Authors: | MP Pritchard R Ossetian DN Li CJ Henderson B Burchell CR Wolf T Friedberg |
| |
Affiliation: | Biomedical Research Centre, University of Dundee, Scotland, United Kingdom. |
| |
Abstract: | Heterologous expression of unmodified recombinant human cytochrome P450 enzymes (P450s) in Escherichia coli has proved to be extremely difficult. To date, high-level expression has only been achieved after altering the 5'-end of the native cDNA, resulting in amino acid changes within the P450 protein chain. We have devised a strategy whereby unmodified P450s can be expressed to high levels in E. coli, by making NH2-terminal translational fusions to bacterial leader sequences. Using this approach, we initially tested two leader sequences, pelB and ompA, fused to CYP3A4. These were compared with an expression construct producing a conventional NH2-terminally modified CYP3A4 (17alpha-3A4). Both leader constructs produced spectrally active, functional protein. Furthermore, the ompA-3A4 fusion gave higher levels of expression, and a marked improvement in the recovery of active P450 in bacterial membrane fractions, when compared with 17alpha-3A4. We then tested the ompA leader with CYP2A6 and CYP2E1, again comparing with the conventional (17alpha-) approach. As before, the leader construct produced active enzyme, and, for CYP2E1 at least, gave a higher level of expression than the 17alpha-construct. The ompA fusion strategy thus appears to represent a significant advance for the expression of P450s in E. coli, circumventing the previous need for individual optimization of P450 sequences for expression. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|