Abstract: | Graft copolymers with poly(n-butyl acrylate) (PBA) backbones and poly(methyl methacrylate) (PMMA) macromonomer side chains are used as compatibilizing agents for PBA/PMMA composite latexes. The composite latexes are prepared by seeded emulsion polymerization of methyl methacrylate (MMA) in the presence of PBA particles. Graft copolymers were already incorporated into the PBA particles prior to using these particles as seed via miniemulsion (co)polymerization of n-butyl acrylate (BA) in the presence of the macromonomers. Comparison between size averages of composite and seed particles indicates no secondary nucleation of MMA during seeded emulsion polymerization. Transmission electron microscopy (TEM) observations of composite particles show the dependence of particle morphologies with the amount of macromonomer (i.e., mole ratio of macromonomer to BA and molecular weight of macromonomer) in seed latex. The more uniform coverage with the higher amount of macromonomer suggests that graft copolymers decrease the interfacial tension between core and shell layers in the composite particles. Dynamic mechanical analysis of composite latex films indicates the existence of an interphase region between PBA and PMMA. The dynamic mechanical properties of these films are related to the morphology of the composite particles, the arrangement of phases in the films, and the volume of the interphase polymer. © 1997 John Wiley & Sons, Inc. |