首页 | 本学科首页   官方微博 | 高级检索  
     


The Use of ProteoTuner Technology to Study Nuclear Factor κB Activation by Heavy Ions
Authors:Arif Ali Chishti  Christa Baumstark-Khan  Hasan Nisar  Yueyuan Hu  Bikash Konda  Bernd Henschenmacher  Luis F Spitta  Claudia Schmitz  Sebastian Feles  Christine E Hellweg
Abstract:Nuclear factor κB (NF-κB) activation might be central to heavy ion-induced detrimental processes such as cancer promotion and progression and sustained inflammatory responses. A sensitive detection system is crucial to better understand its involvement in these processes. Therefore, a DD-tdTomato fluorescent protein-based reporter system was previously constructed with human embryonic kidney (HEK) cells expressing DD-tdTomato as a reporter under the control of a promoter containing NF-κB binding sites (HEK-pNFκB-DD-tdTomato-C8). Using this reporter cell line, NF-κB activation after exposure to different energetic heavy ions (16O, 95 MeV/n, linear energy transfer—LET 51 keV/µm; 12C, 95 MeV/n, LET 73 keV/μm; 36Ar, 95 MeV/n, LET 272 keV/µm) was quantified considering the dose and number of heavy ions hits per cell nucleus that double NF-κB-dependent DD-tdTomato expression. Approximately 44 hits of 16O ions and ≈45 hits of 12C ions per cell nucleus were required to double the NF-κB-dependent DD-tdTomato expression, whereas only ≈3 hits of 36Ar ions were sufficient. In the presence of Shield-1, a synthetic molecule that stabilizes DD-tdTomato, even a single particle hit of 36Ar ions doubled NF-κB-dependent DD-tdTomato expression. In conclusion, stabilization of the reporter protein can increase the sensitivity for NF-κB activation detection by a factor of three, allowing the detection of single particle hits’ effects.
Keywords:nuclear factor κ  B  reporter system  ProteoTuner system  heavy ions  X-rays  tdTomato  DD-tdTomato  fluorescent protein  galactic cosmic rays  space missions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号