首页 | 本学科首页   官方微博 | 高级检索  
     


3D Printed SiOC(N) Ceramic Scaffolds for Bone Tissue Regeneration: Improved Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells
Authors:Yuejiao Yang  Apoorv Kulkarni  Gian Domenico Soraru  Joshua M Pearce  Antonella Motta
Affiliation:1.BIOtech, Center for Biomedical Technologies, University of Trento, Via Sommarive 9, 38123 Trento, Italy;2.European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy;3.Glass & Ceramics Lab, Department of Industrial Engineering, University of Trento, Via Sommerive 9, 38123 Trento, Italy;4.Department of Electrical and Computer Engineering, Western University, 1151 Richmond St. N., London, ON N6A 5B9, Canada;
Abstract:Bone tissue engineering has developed significantly in recent years as there has been increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone, these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy, and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.
Keywords:bone tissue regeneration  polymer derived ceramics  biocompability  stem cells  osteogenic differentiation  additive manufacturing  fused filament fabircation  cellular ceramics  open source 3D printing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号