首页 | 本学科首页   官方微博 | 高级检索  
     


High resolution time-of-flight mass analysis of the entire range of intact singly-charged proteins
Authors:Lee Jeonghoon  Chen Huijuan  Liu Tiancheng  Berkman Clifford E  Reilly Peter T A
Affiliation:Washington State University, Department of Chemistry, Pullman, Washington 99164, United States.
Abstract:The proof of principle for high-resolution analysis of intact singly charged proteins of any size is presented. Singly charged protein ions were produced by electrospray ionization followed by surface-induced charge reduction at atmospheric pressure. The inlet and trapping system "stops" the forward momentum of the protein ions over a very broad range to be captured by the digitally produced electric fields of a large radius linear ion trap whereupon they are moved into a smaller radius linear ion trap and collected and concentrated in front of its exit end-cap electrode using digital waveform manipulation. The protein ions are then ejected on demand from the end of the small radius linear quadrupole in a tightly collimated ion beam with an instrumentally defined kinetic energy into the acceleration region of an orthogonal acceleration reflectron time-of-flight mass analyzer where their flight times were measured and detected with a Photonis BiPolar TOF detector. We present results that clearly prove that massive singly charged ions can yield high-resolution mass spectra with very low chemical noise and without loss of sensitivity with increasing mass across the entire spectrum. Analysis of noncovalently bound protein complexes was demonstrated with streptavidin-Cy5 bound with a biotinylated peptide mimic. Our results suggest proteins across the entire range can be directly quantified using our mass analysis technique. We present evidence that solvent molecules noncovalently adduct onto the proteins while yielding consistent flight time distributions. Finally, we provide a look into future that will result from the ability to rapidly measure and quantify protein distributions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号