首页 | 本学科首页   官方微博 | 高级检索  
     


Enthalpy- versus Entropy-Driven Molecular Recognition in the Era of Biologics
Authors:Dr. Monica Varese  Dr. Salvador Guardiola  Dr. Jesús García  Prof. Ernest Giralt
Affiliation:Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
Abstract:Our laboratory has recently identified two nanobodies (small antibodies produced by camelids)—Nb1 and Nb6—that bind efficiently to epithelial growth factor (EGF) and inhibit its ability to activate its receptor (EGFR). Because of the relevance of the EGF/EGFR axis as a target in oncology, these new nanobodies have promising therapeutic potential. This article, however, is focused on another feature of these nanobodies: their distinct thermodynamic signatures. Nb1 binds to EGF through an entropy-driven mechanism whereas Nb6 binds to this factor under enthalpic control. We discuss the advantages and disadvantages of each mechanism in the contexts of traditional medical chemistry (small-molecule drugs) and also of biological drugs. In this latter case, the implications in terms of selectivity are far from being clearly established and further experimental data are required. Their monomeric natures, high stability, and ease of recombinant production make nanobodies ideally suited for thermodynamic studies. Moreover, nanobodies, thanks to their simpler structures in comparison with conventional antibodies, might provide better understanding of the structural basis of the thermodynamic parameters of antigen recognition.
Keywords:antibodies  epithelial growth factor  molecular recognition  nanobodies  thermodynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号