首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌粒子群和模糊聚类的图像分割算法*
引用本文:张小红,宁红梅. 基于混沌粒子群和模糊聚类的图像分割算法*[J]. 计算机应用研究, 2011, 28(12): 4786-4789
作者姓名:张小红  宁红梅
作者单位:江西理工大学信息工程学院,江西赣州,341000
基金项目:国家自然科学基金资助项目(11062002);江西省自然科学基金资助项目(2010GZS0083);江西省教育厅科技项目(GJJ11470)
摘    要:模糊C-均值聚类算法(FCM)是一种结合模糊集合概念和无监督聚类的图像分割技术,适合灰度图像中存在着模糊和不确定的特点;但该算法受初始聚类中心和隶属度矩阵的影响,易陷入局部极小.利用混沌非线性动力学具有遍历性、随机性等特点,结合粒子群的寻优特性,提出了一种基于混沌粒子群模糊C-均值聚类(CPSO-FCM)的图像分割算法.实验证明,该方法不仅具有防止粒子因停顿而收敛到局部极值的能力,而且具有更快的收敛速度和更高的分割精度.

关 键 词:图像分割  混沌粒子群算法  模糊C-均值聚类  全局优化

Fuzzy clustering image segmentation algorithm based on CPSO
ZHANG Xiao-hong,NING Hong-mei. Fuzzy clustering image segmentation algorithm based on CPSO[J]. Application Research of Computers, 2011, 28(12): 4786-4789
Authors:ZHANG Xiao-hong  NING Hong-mei
Affiliation:(Faculty of Information Engineering, Jiangxi University of Science & Technology, Ganzhou Jiangxi 341000, China)
Abstract:Fuzzy C-means(FCM) clustering algorithm was an effective image segmentation algorithm which combined the concept of fuzzy sets and unsupervised clustering. And it suited for the uncertain and ambiguous characteristic in intensity image. But it was sensitive to initial clustering center and membership matrix and likely converged into the local minimum, which caused the quality of image segmentation lower. By using of the properties-ergodicity, randomicity of chaos, this paper proposed a new image segmentation algorithm, which combined the chaos particle swarm optimization(CPSO) and FCM clustering. Experimental results prove this method not only has the ability to prevent the particles to convergence to local optimum because of standstill, but also has faster convergence and higher accuracy of segmentation.
Keywords:image segmentation   chaos particle swarm optimization   fuzzy C-means clustering   global optimization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号