首页 | 本学科首页   官方微博 | 高级检索  
     


Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection
Authors:Wang Hsin-Neng  Vo-Dinh Tuan
Affiliation:Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC 27708, USA.
Abstract:A label-free approach using plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection using surface-enhanced Raman scattering (SERS) is described. To induce a strong plasmonic coupling effect, a nanonetwork of silver nanoparticles with the Raman label located between adjacent nanoparticles is assembled by Raman-labeled DNA-locked nucleic acid (LNA) duplexes. The PCI method then utilizes specific nucleic acid sequences of interest as competitor elements for the Raman-labeled DNA strands to interfere the formation of nanonetworks in a competitive binding process. As a result, the plasmonic coupling effect induced through the formation of the nanonetworks is significantly diminished, resulting in a reduced SERS signal. The potential of the PCI technique for biomedical applications is illustrated by detecting single-nucleotide polymorphism (SNP) and microRNA sequences involved in breast cancers. The results of this study could lead to the development of nucleic acid diagnostic tools for biomedical diagnostics and biosensing applications using SERS detection.
Keywords:surface‐enhanced Raman scattering (SERS)  nanoprobes  plasmonic coupling  nucleic acid detection
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号