首页 | 本学科首页   官方微博 | 高级检索  
     


Pressure and temperature effects on the hydrogenation of coal-derived asphaltene
Authors:Isao Yoshimoto  Hironori Itoh  Masataka Makabe  Koji Ouchi
Affiliation:Faculty of Engineering, Hokkaido University, Sapporo, 060 Japan
Abstract:Pressure and temperature effects on hydrogenation reactions were examined using coal-derived asphaltene at 390,420 and 450 °C, under 3 and 10 MPa of hydrogen partial pressure. Higher conversion was obtained at higher reaction temperatures. Benzene-insoluble material (Bl) was formed at higher temperatures especially at low hydrogen pressure, this Bl being one-third of the reaction product at 450 °C. From structural analysis of unreacted asphaltenes and product oils, at 390 °C, it was concluded that smaller molecular components convert to oil initially and the larger molecules remain as unreacted asphaltene. Under higher hydrogen pressure for all temperatures carbon aromaticity (fa) and number of aromatic ring per structural unit (Raus) in unreacted asphaltenes were lower than those under lower hydrogen pressure suggesting that hydrogenation of the aromatic nucleus was promoted by higher pressure. At lower hydrogen pressure, Raus for asphaltenes at higher temperature is larger than that at lower temperature. This suggests that at lower hydrogen pressure, dehydrogenation or condensation reactions occur more easily. A large effect at higher hydrogen pressure was a reduction in the extent of condensation reactions. Higher reaction temperatures contribute to splitting of bridged linkages so reducing molecular size and degree of aromatization.
Keywords:coal  liquefaction  hydrogenation  asphaltenes  oils  reaction mechanisms
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号