首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in heat tolerance of Escherichia coli O157:H7 after exposure to acidic environments
Affiliation:1. Duke Clinical Research Institute, Durham, NC;2. Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC;3. Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC;4. Evidence-Based Practice Center, Duke Clinical Research Institute, Durham, NC;5. Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC;6. Duke University School of Medicine, Durham, NC;7. Center for Health Services Research in Primary Care, Durham Veterans Affairs Medical Center, Durham, NC;8. Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Duke University, Durham, NC
Abstract:Acid-adapted bacterial cells are known to have enhanced tolerance to various secondary stresses. However, a comparison of heat tolerance of acid-adapted and acid-shocked cells of Escherichia coli O157:H7 has not been reported. D - and z -values of acid-adapted, acid-shocked, and control cells of an unusually heat-resistant strain (E0139) of E. coli O157:H7, as well as two other strains of E. coli O157:H7, were determined based upon the number of cells surviving heat treatment at 52, 54 or 56°C in tryptic soy broth (pH 7·2) for 0, 10, 20 or 30 min. The unusual heat tolerance of E. coli O157:H7 strain E0139 was confirmed. D -values for cells from 24-h cultures were 100·2, 28·3, and 6·1 min at 52, 54 and 56°C, respectively, with a z -value of 3·3°C. The highest D -values of other E. coli O157:H7 strains were 13·6 and 9·2 min at 52 and 54°C, respectively, whereas highest D -values of non-O157:H7 strains were 78·3 and 29·7 min at 52 and 54°C. D -values of acid-adapted cells were significantly higher than those of unadapted and acid-shocked cells at all temperatures tested. In a previous study, we observed that both acid-adapted cells and acid-shocked cells of strain E0139 had enhanced acid tolerance. This suggests that different mechanisms protect acid-adapted and acid-shocked cells against subsequent exposure to heat or an acidic environment. The two types of cells should be considered separately when evaluating survival and growth characteristics upon subsequent exposure to different secondary stress conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号