首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of process parameters of water-assisted injection molding based on inverse radial basis function neural network
Authors:Jiangen Yang  Shengrui Yu
Affiliation:1. Engineering Science and Technology Department, Shanghai Ocean University, Shanghai, China;2. Mechanical and Electronic Engineering Department, Jingdezhen Ceramic Institute, Jingdezhen, China
Abstract:Because of the introduction of new processing parameters in water-assisted injection molding (WAIM), processes control has become more difficult. First, design of experiment (DOE) was carried out by using optimized Latin hypercubes (Opt LHS). On the basis of this, computational fluid dynamics (CFD) method was used to simulate and calculate hollowed core ratios and wall thickness differences of cooling water pipe at different positions. Then inverse radial basis function (RBF) neural network model reflecting the fitting relationship between processing parameters and molding quality was established, and accuracy of the model was detected by cross validation. Finally, expected molding quality was applied to predict processing parameters, and the obtained molding quality under the predicted processing parameters was verified by computer aided engineering (CAE) simulation and experimental methods. The results showed that mean relative precisions of processing parameters such as melt temperature, delay time, short shot size, water pressure, and mold temperature for inverse RBF model were 98.6%, 93.6%, 98.5%, 93.9%, and 97.9%, respectively, which met the accuracy requirements. Furthermore, compared with expected values of hollowed core ratios and wall thickness differences, the average errors of CAE and experiment were 2.3% and 4.9%, respectively.
Keywords:computational fluid dynamics  inverse radial basis function  optimized Latin hypercubes  process parameters  prediction  water-assisted injection molding
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号