首页 | 本学科首页   官方微博 | 高级检索  
     


NANO SIZE EFFECT IN GRAIN BOUNDARY MIGRATION OF COPPER
Authors:L.Zhou  X.Q.Wei  N.G.Zhou  D.G.Li
Abstract:Molecular dynamics simulations of high temperature annealing of copper bicrystals have been carried out. The bicrystals have planar grain boundaries, and the gain size varies in nano range. An EAM (embedded atom method) potential of FS type is used for calculating the interatomic forces. The results show that in nanocrystalline copper, GB migration driven by inter-GB reaction can take place. A critical grain size is identified, below which the inter-GB reaction becomes strong enough to trigger GB motion, which accelerates rapidly and leads to annihilation of the grain boundaries. The critical size is found to be 16 atomic radii. A "through intermediate grain mechanism" is identified for the nano-grain boundary motion observed, which is never reported for GB migrations of conventional polycrystalline metals.
Keywords:grain boundary migration   nanocrystal   copper
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《金属学报(英文版)》浏览原始摘要信息
点击此处可从《金属学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号