首页 | 本学科首页   官方微博 | 高级检索  
     


Novel capacitor process using diffusion barrier rounded by Si3N4 spacer for high density FRAM device
Authors:Bon Jae Koo Yoon Jong Song Sung Yung Lee Dong Jin Jung Hyun Ho Kim Suk Ho Joo Yong Tak Lee Kinam Kim
Affiliation:Semicond. R&D Center, Samsung Electron. Co. Ltd., Kyungki;
Abstract:A novel capacitor process was successfully implemented in 4 Mb FRAM device by developing a barrier layer rounded by Si3N4 spacer (BRS) scheme. Using this process, it is possible to eliminate an undesired barrier etching damage, which is a major role in degrading ferroelectric properties. The novel capacitor process was generated by etching an Ir barrier layer and rounding the barrier by a Si3N4 spacer before preparing Pb(Zr 1-xTix)O3 (PZT) films. It was observed that uniform sol-gel derived PZT films were prepared on the patterned Ir substrate by using Si3N4 spacer, which provides a smooth edge of the patterned cell. The contact resistance between bottom electrode and polysilicon plug after full integration was monitored below 700 Ω per contact with contact size 0.6×0.6 (μm2). Compared to the ferroelectric capacitor damaged by barrier etching, the novel Pb(Zr1-xTix)O3 (PZT) capacitor exhibited a well-saturated Q-V curve. The fully processed novel capacitor having 1.2×1.2 (μm2) effective area displayed remnant polarization of 14 (μC/cm2) at an operating voltage of 3.0 V. The BRS ferroelectric capacitor showed a reliable retention property until 100 h at 125°C. Same state retention (Qss) was stable with time up to 100 h while opposite state retention (Qos) showed a log-linear decay rate at 125°C thermal stress
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号