首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of anomalous penetrant diffusion in polymers
Authors:J C Wu  Nikolaos A Peppas
Abstract:This work introduces a new numerical algorithm that can be used to analyze complex problems of penetrant transport. Penetrant transport in polymers often deviates from the predictions of Fick's law because of the coupling between penetrant diffusion and the polymer mechanical behavior. This phenomenon is particularly important in glassy polymers. This leads to a model consisting of two coupled differential equations for penetrant diffusion and polymer stress relaxation, respectively. If the polymer relaxation is the rate-limiting step, both the concentration and stress profiles are very steep. A new algorithm based on a finite difference method is proposed to solve the model equations. It features the development of a tridiagonal iterative method to solve the nonlinear finite difference equations obtained from the finite difference approximation of the differential equations. This method was found to be efficient and accurate. Numerical simulation of penetrant diffusion in glassy polymers was performed, showing that the integral sorption Deborah number is a major parameter affecting the transition from Fickian to anomalous diffusion behavior. © 1993 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号