首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN-LSTM的多因素时空风速预测
引用本文:袁咪咪,宫法明,李昕. 基于CNN-LSTM的多因素时空风速预测[J]. 计算机系统应用, 2021, 30(8): 133-141. DOI: 10.15888/j.cnki.csa.008089
作者姓名:袁咪咪  宫法明  李昕
作者单位:中国石油大学(华东) 计算机科学与技术学院, 青岛 266580
基金项目:科技部创新方法工作专项(2015IM010300)
摘    要:准确的风速预测在风能转换和电力分配中起着至关重要的作用.但是,风的固有间歇性使其难以实现高精度的预测.现有研究方法大都考虑了风速的时间相关性,但忽略了气象因素随空间变化对风速的影响.为获得准确可靠的预测结果,结合卷积神经网络和长短期记忆网络,提出了一种多因素时空风速预测相关(MFSTC)模型.同时,还构建了一种基于三维...

关 键 词:风速预测  时空相关性  卷积神经网络(CNN)  LSTM网络  特征属性提取
收稿时间:2020-11-12
修稿时间:2020-12-21

Multifactor Spatio-Temporal Wind Speed Prediction Based on CNN-LSTM
YUAN Mi-Mi,GONG Fa-Ming,LI Xin. Multifactor Spatio-Temporal Wind Speed Prediction Based on CNN-LSTM[J]. Computer Systems& Applications, 2021, 30(8): 133-141. DOI: 10.15888/j.cnki.csa.008089
Authors:YUAN Mi-Mi  GONG Fa-Ming  LI Xin
Affiliation:College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
Abstract:The accurate prediction of wind speed plays a vital role in the transformation of wind energy and the dispatching of electricity. However, the inherent intermittence of wind makes it a challenge to achieve high-precision wind speed prediction. Most studies consider the temporal correlation of wind speed but ignore the influence of meteorological factors with changes in space on wind speed. To obtain accurate and reliable forecasting results, this study proposes a MultiFactor Spatio-Temporal Correlation (MFSTC) model for wind speed prediction by combining a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) network. This paper also constructs a data representation method based on a three-dimensional matrix. For multiple sites, this model employs the improved PCA-LASSO algorithm to extract the characteristic meteorological factors. Then, it uses CNN to establish the spatial feature relationship among the sites and the LSTM network to establish the temporal feature relationship among historical time points. The final wind speed prediction results are obtained based on spatio-temporal correlation analysis. Furthermore, experimental verification is carried out on the 10 years of actual wind speed datasets from 2009 to 2018 provided by Dongying Meteorological Center. The results show that the MFSTC model is more accurate than common prediction methods, which proves the effectiveness of the proposed method.
Keywords:wind speed prediction  temporal and spatial correlation  Convolutional Neural Network (CNN)  LSTM network  feature attributes extraction
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号