首页 | 本学科首页   官方微博 | 高级检索  
     

抽水蓄能电站中基于边缘计算的任务卸载算法
引用本文:崔运进,江帆,黄建德,阎峻,赵锋. 抽水蓄能电站中基于边缘计算的任务卸载算法[J]. 计算机系统应用, 2021, 30(8): 225-231. DOI: 10.15888/j.cnki.csa.008037
作者姓名:崔运进  江帆  黄建德  阎峻  赵锋
作者单位:华东桐柏抽水蓄能发电有限责任公司, 杭州 310003;国网新源控股有限公司, 北京 100761
摘    要:为降低抽水蓄能电站中终端设备密集计算型任务的处理时延,针对抽水蓄能电站的物联网体系,提出了一种基于边缘计算的任务卸载算法.在该文方案中,首先基于层次分析法对计算任务进行优先级划分,并以终端能耗为约束、以终端计算任务处理时延为优化目标建立卸载模型,其次基于Q学习算法(Q-Learning,QL)探索系统的状态转移信息,以...

关 键 词:抽水蓄能电站  物联网  边缘计算  深度Q网络  任务卸载
收稿时间:2020-11-18
修稿时间:2020-12-21

Task Offloading Algorithm Based on Edge Computing in Pumped Storage Power Station
CUI Yun-Jin,JIANG Fan,HUANG Jian-De,YAN Jun,ZHAO Feng. Task Offloading Algorithm Based on Edge Computing in Pumped Storage Power Station[J]. Computer Systems& Applications, 2021, 30(8): 225-231. DOI: 10.15888/j.cnki.csa.008037
Authors:CUI Yun-Jin  JIANG Fan  HUANG Jian-De  YAN Jun  ZHAO Feng
Affiliation:East China Tongbai Pumped Storage Power Generation Co. Ltd., Hangzhou 310003, China;State Grid Xinyuan Holdings Ltd., Beijing 100761, China
Abstract:To reduce the delay of processing intensive computing tasks by terminal equipment in pumped storage power stations , this paper proposes a task offloading algorithm based on edge computing for the Internet of Things (IoT) system of pumped storage power stations. Firstly, the computing tasks are prioritized based on the analytic hierarchy process, and an offloading model is built with the terminal energy consumption as the constraint and the processing delay of terminal computing tasks as the optimization objective. Secondly, the Q-Learning (QL) algorithm is adopted to collect the state transition information, in the hope to obtain the best offloading strategy between the terminal device and the edge node. Finally, Deep Learning (DL) is used to map the relationship between states and actions to avoid a dimensional explosion in the iterative solution of the algorithm. The simulation results show that the proposed method greatly reduces the average delay of computing tasks and can greatly improve the execution efficiency of production operations and safety monitoring associated with pumped storage power stations.
Keywords:pumped storage power station  Internet of Things (IoT)  edge computing  deep Q network  task offloading
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号