首页 | 本学科首页   官方微博 | 高级检索  
     


AMPK Prevents Palmitic Acid-Induced Apoptosis and Lipid Accumulation in Cardiomyocytes
Authors:Lucas Adrian  Matthias Lenski  Klaus Tödter  Jörg Heeren  Michael Böhm  Ulrich Laufs
Affiliation:1. , Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universit?tsklinikum des Saarlandes, Homburg, Germany;2. , Institut für Biochemie und Molekulare Zellbiologie, Universit?tsklinikum Hamburg‐Eppendorf, Hamburg, Germany;3. , Klinik und Poliklinik für Kardiologie, Universit?tsklinikum Leipzig, Leipzig, Germany
Abstract:Palmitic acid, a main fatty acid (FA) in human nutrition, can induce apoptosis of cardiomyocytes. However, a specific combination of palmitic, myristic and palmitoleic acid (CoFA) has been reported to promote beneficial cardiac growth. The aim of this study was to investigate the relevance of CoFA for cardiac growth and to delineate the underlying signaling pathways of CoFA and palmitic acid treatment. CoFA treatment of C57Bl/6 mice increased FA serum concentrations. However, morphologic and echocardiographic analysis did not show myocardial hypertrophy. Cell culture studies using rat ventricular cardiomyocytes revealed an increased phosphorylation of AMP activated protein kinase α (AMPKα) to 155 ± 19% and its target acetyl-CoA-carboxylase to 177 ± 23% by CoFA. Treatment with myristic acid also increased AMPKα phosphorylation to 189 ± 32%. Palmitic acid did not activate AMPKα but increased expression of the FA translocase CD36 (FAT/CD36) to 163 ± 23% and adipose-differentiation-related-protein (ADRP), a sensitive marker of lipid accumulation, to 168 ± 42%. This was associated with an increased phosphorylation of the stress-activated-protein-kinase/Jun-amino-terminal-kinase (SAPK/JNK) to 173 ± 27%. In CoFA-treated cells, phosphorylation of SAPK/JNK was unaltered. FACS analysis revealed increased apoptosis to 159 ± 5% by palmitic acid but not by CoFA. AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) prevented up-regulation of ADRP and increased apoptosis by palmitic acid. Confirming these findings, inhibition of AMPK by compound C in CoFA-treated cardiomyocytes resulted in an increased expression of ADRP to 154 ± 27%, FAT/CD36 to 167 ± 28% and apoptosis to 183 ± 12%. These data reveal that AMPK activation plays an important role in prevention of palmitic acid-induced apoptosis and lipid accumulation in cardiomyocytes.
Keywords:Fatty acids  Metabolism  Nutrition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号