首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波分形理论的风电轴承故障识别
引用本文:孙自强,陈长征,孟强,周勃. 基于小波分形理论的风电轴承故障识别[J]. 沈阳工业大学学报, 2014, 36(6): 666-670. DOI: 10.7688/j.issn.1000-1646.2014.06.13
作者姓名:孙自强  陈长征  孟强  周勃
作者单位:沈阳工业大学 机械工程学院, 沈阳 110870
基金项目:国家自然科学基金资助项目,辽宁省教育厅基金资助项目(L2010401).
摘    要:针对风电轴承振动特征信号易被环境噪声调制污染、信噪比低、具有非线性和不平稳的特点,利用基于小波分形的故障识别方法对此进行了研究.采用小波包分解,利用互信息法和Cao算法分别确定了相空间的延迟时间和嵌入维数,根据不同频带的关联维数变化确定风电轴承的工作状态.该方法不依赖于风力机工作的动力学模型,对整体系统信息状态变化敏感.通过现场实验证明,该方法较好地解决了风电轴承故障难以识别的问题,为更加细致地研究风电轴承振动信号提供了重要参考.

关 键 词:风力机  故障识别  关联维数  小波包  分形  互信息法  轴承  相空间  

Fault recognition of wind turbine bearings based on wavelet and fractal theory
SUN Zi-qiang,CHEN Chang-zheng,MENG Qiang,ZHOU Bo. Fault recognition of wind turbine bearings based on wavelet and fractal theory[J]. Journal of Shenyang University of Technology, 2014, 36(6): 666-670. DOI: 10.7688/j.issn.1000-1646.2014.06.13
Authors:SUN Zi-qiang  CHEN Chang-zheng  MENG Qiang  ZHOU Bo
Affiliation:School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
Abstract:In order to solve the problems that the vibration signals of wind turbine bearings are easily modulated and polluted by the environmental noises and have such characteristics as low signal to noise ratio, non linearity and non stationarity, the corresponding study was performed with a fault recognition method based on wavelet and fractal theory. Through adopting the wavelet packet decomposition, the delay time and embedding dimension of phase space were determined with the mutual information method and Cao algorithm, respectively. The working state of wind turbine bearings was determined according to the correlation dimension changes of different frequency bands. The proposed method is independent on the working dynamical model for wind turbine, and is sensitive to the information state change of overall system. With the field experiments, it is found that the proposed method can better solve the hard distinguishing problem in the faults of wind turbine bearings, and provide the important reference for more detailed study on the vibration signals of wind turbine bearings.
Keywords:wind turbine  fault recognition  correlation dimension  wavelet packet  fractal  mutual information method  bearing  phase space
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《沈阳工业大学学报》浏览原始摘要信息
点击此处可从《沈阳工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号