首页 | 本学科首页   官方微博 | 高级检索  
     


Human action segmentation and classification based on the Isomap algorithm
Authors:Yu-Ming Liang  Sheng-Wen Shih  Arthur Chun-Chieh Shih
Affiliation:1. Department of Computer Science and Information Engineering, Aletheia University, Taipei, 25103, Taiwan
2. Department of Computer Science and Information Engineering, National Chi Nan University, Puli, Nantou, 545, Taiwan
3. Institute of Information Science, Academia Sinica, Nankang, Taipei, 115, Taiwan
Abstract:Visual analysis of human behavior has attracted a great deal of attention in the field of computer vision because of the wide variety of potential applications. Human behavior can be segmented into atomic actions, each of which indicates a single, basic movement. To reduce human intervention in the analysis of human behavior, unsupervised learning may be more suitable than supervised learning. However, the complex nature of human behavior analysis makes unsupervised learning a challenging task. In this paper, we propose a framework for the unsupervised analysis of human behavior based on manifold learning. First, a pairwise human posture distance matrix is derived from a training action sequence. Then, the isometric feature mapping (Isomap) algorithm is applied to construct a low-dimensional structure from the distance matrix. Consequently, the training action sequence is mapped into a manifold trajectory in the Isomap space. To identify the break points between the trajectories of any two successive atomic actions, we represent the manifold trajectory in the Isomap space as a time series of low-dimensional points. A temporal segmentation technique is then applied to segment the time series into sub series, each of which corresponds to an atomic action. Next, the dynamic time warping (DTW) approach is used to cluster atomic action sequences. Finally, we use the clustering results to learn and classify atomic actions according to the nearest neighbor rule. If the distance between the input sequence and the nearest mean sequence is greater than a given threshold, it is regarded as an unknown atomic action. Experiments conducted on real data demonstrate the effectiveness of the proposed method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号