首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Sn on microstructure and mechanical properties of Ti-base dendrite/ultrafine-structured multicomponent alloys
Authors:G. He  M. Hagiwara  J. Eckert
Affiliation:(1) the Light Materials Group, National Institute for Materials Science, 305-0047 Ibaraki, Japan;(2) the Technische Universitat Darmstadt, D-64287 Darmstadt, Germany
Abstract:Ti57−x Cu15Ni14Sn4+x Nb10 (x = 0, 5, or 10) alloys were prepared by copper mold casting. At Sn = 4 at. pct, a dendrite/ultrafine-structured multicomponent alloy was obtained, which exhibits 1271 MPa yield strength, 77 GPa Young’s modulus, and 2 pct plasticity at room temperature for 3-mm-diameter samples. The cooling rate significantly affects the as-cast microstructure and the mechanical properties. For 5-mm-diameter samples, the alloy exhibits 1226 MPa yield strength, 63 GPa Young’s modulus, and 2.5 pct plasticity. At Sn = 9 at. pct, Ti-, Sn-, and Nb-rich particles precipitate primarily. This near-hypereutectic alloy composition leads to the precipitation of intermetallics, which deteriorate the mechanical properties and result in the coexistence of ductile and brittle fracture mechanisms. At Sn = 14 at. pct, the alloy composition is completely in the intermetallic region, thus inducing the formation of Ti2Cu, Ti2Ni, and Ti3Sn intermetallics. The alloy becomes very brittle because the intermetallic compounds dominate the fracture process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号