首页 | 本学科首页   官方微博 | 高级检索  
     


Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach
Authors:Blomqvist  A Lindquist  A Nagamune  R
Affiliation:Dept. of Math., R. Inst. of Technol., Stockholm, Sweden;
Abstract:Over the last several years, a new theory of Nevanlinna-Pick interpolation with complexity constraint has been developed for scalar interpolants. In this paper we generalize this theory to the matrix-valued case, also allowing for multiple interpolation points. We parameterize a class of interpolants consisting of "most interpolants" of no higher degree than the central solution in terms of spectral zeros. This is a complete parameterization, and for each choice of interpolant we provide a convex optimization problem for determining it. This is derived in the context of duality theory of mathematical programming. To solve the convex optimization problem, we employ a homotopy continuation technique previously developed for the scalar case. These results can be applied to many classes of engineering problems, and, to illustrate this, we provide some examples. In particular, we apply our method to a benchmark problem in multivariate robust control. By constructing a controller satisfying all design specifications but having only half the McMillan degree of conventional H/sup /spl infin// controllers, we demonstrate the advantage of the proposed method.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号