首页 | 本学科首页   官方微博 | 高级检索  
     


Sparse LMS/F algorithms with application to adaptive system identification
Authors:Guan Gui  Abolfazl Mehbodniya  Fumiyuki Adachi
Abstract:Standard least mean square/fourth (LMS/F) is a classical adaptive algorithm that combined the advantages of both least mean square (LMS) and least mean fourth (LMF). The advantage of LMS is fast convergence speed while its shortcoming is suboptimal solution in low signal‐to‐noise ratio (SNR) environment. On the contrary, the advantage of LMF algorithm is robust in low SNR while its drawback is slow convergence speed in high SNR case. Many finite impulse response systems are modeled as sparse rather than traditionally dense. To take advantage of system sparsity, different sparse LMS algorithms with lp‐LMS and l0‐LMS have been proposed to improve adaptive identification performance. However, sparse LMS algorithms have the same drawback as standard LMS. Different from LMS filter, standard LMS/F filter can achieve better performance. Hence, the aim of this paper is to introduce sparse penalties to the LMS/F algorithm so that it can further improve identification performance. We propose two sparse LMS/F algorithms using two sparse constraints to improve adaptive identification performance. Two experiments are performed to show the effectiveness of the proposed algorithms by computer simulation. In the first experiment, the number of nonzero coefficients is changing, and the proposed algorithms can achieve better mean square deviation performance than sparse LMS algorithms. In the second experiment, the number of nonzero coefficient is fixed, and mean square deviation performance of sparse LMS/F algorithms is still better than that of sparse LMS algorithms. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:least mean square  least mean fourth  least mean square/fourth (LMS/F)  lp‐norm LMS/F  l0‐norm LMS/F  sparse penalty  adaptive system identification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号