首页 | 本学科首页   官方微博 | 高级检索  
     


Factors and processes controlling methane emissions from rice fields
Authors:H.U. Neue  R. Wassmann  H.K. Kludze  Wang Bujun  R.S. Lantin
Affiliation:(1) Soil and Water Sciences Division, International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines
Abstract:Understanding the major controlling factors of methane emissions from ricefields is critical for estimates of source strengths. This paper reports results on the relationship of different plant characteristics and methane fluxes in ricefields. Methane fluxes in ricefields show distinct diel and seasonal variations. Diel variations are mainly controlled by soil solution temperature and the partial pressure of methane. One or two distinct seasonal maxima are observed in irrigated ricefields. The first is governed by methane production from soil and added organic matter and a second at heading is plant derived. During ripening and maturity, root exudation, root porosity and root oxidation power may control methane emission rates. Rice plants play an important role in methane flux. The aerenchyma conduct methane from the bulk soil into the atmosphere. The amount of carbon utilized in methane formation varied among cultivars. A strong positive effect of rice root exudates on methane production imply that cultivar selections for lower methane emissions should not only be based on the gas transport capabilities but also on the quality and quantity of root exudates. Soils show a wide range of methane production potential but no simple correlation between any stable soil property and methane production is evident. Various cultural practices affect methane emissions. Defined aeration periods reduce methane emissions. Soil entrapped methane is released to the atmosphere as a result of soil disturbances. Mineral fertilizers influence methane production and sulfate containing fertilizer decrease methane production. The methane release per m2 from different rice ecosystems follow the order: deepwater rice>irrigated rice>rainfed rice. Abatement strategies may only be accepted if the methane source strength of ricefields is reliably discriminated and if mitigation technologies are in accordance with increased rice production and productivity. This revised version was published online in August 2006 with corrections to the Cover Date.
Keywords:diel patterns  methane  methane emissions  methane emissions from ricefields  methane flux  root exudates
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号