首页 | 本学科首页   官方微博 | 高级检索  
     

模糊需求车辆路径问题及其启发式算法
引用本文:陈宝文,宋申民,陈兴林. 模糊需求车辆路径问题及其启发式算法[J]. 计算机应用, 2006, 26(11): 2639-2672
作者姓名:陈宝文  宋申民  陈兴林
作者单位:哈尔滨工业大学,航天学院,黑龙江,哈尔滨,150001
基金项目:教育部留学回国人员科研启动基金
摘    要:对模糊需求信息条件下的车辆路径问题进行策略分析,提出解决此类问题的改进蚁群算法。采用多蚁群协作,修改信息素更新规则,根据收敛要求动态调整主要参数等对蚁群算法进行改进,应用该方法解决机会约束策略和可能性策略下的模糊需求车辆路径问题。实验结果证明了改进算法对优化模糊需求车辆问题非常有效。

关 键 词:蚁群算法  模糊逻辑  模糊可能性  模糊需求  车辆路径问题
文章编号:1001-9081(2006)11-2639-04
收稿时间:2006-05-30
修稿时间:2006-05-302006-08-02

Vehicle routing problem with fuzzy demands and its heuristic ant colony algorithm
CHEN Bao-wen,SONG Shen-min,CHEN Xing-lin. Vehicle routing problem with fuzzy demands and its heuristic ant colony algorithm[J]. Journal of Computer Applications, 2006, 26(11): 2639-2672
Authors:CHEN Bao-wen  SONG Shen-min  CHEN Xing-lin
Affiliation:School of Astronautics, Harbin Institute of Technology, Harbin Heilongjiang 150001, China
Abstract:Based on the analysis of strategy for solving vehicle routing problem with fuzzy demands (VRPFD), an improved ant colony algorithm was proposed. In this advanced algorithm, multi-ant colonies collaborated, the state transition rules were modified, and the parameters were adjusted according to the convergent requirements. It was applied to solve VRPFD under opportunity restriction and possibility strategy. The real demands based on statistical simulation were used to appraise the prior routing. Experimental results show that the algorithm is feasible and effective for VRPFD.
Keywords:ant colony algorithm   fuzzy logic   fuzzy possibility   fuzzy demands   vehicle routing problem
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号