首页 | 本学科首页   官方微博 | 高级检索  
     

基于经验模态分解自适应滤波的次同步振荡ESPRIT分析
引用本文:李宽,李兴源,胡楠,赵睿,穆子龙. 基于经验模态分解自适应滤波的次同步振荡ESPRIT分析[J]. 电力系统保护与控制, 2012, 0(13): 18-23
作者姓名:李宽  李兴源  胡楠  赵睿  穆子龙
作者单位:四川大学电气信息学院,四川 成都 610065
基金项目:国家自然科学基金重点项目(51037003);四川省科技厅基础应用计划(2010jy0018);四川省电力公司科技项目(11H0889)~~
摘    要:ESPRIT是一种可以准确辨识电力系统次同步振荡模态的算法,但在有噪声的情况下模态参数辨识不理想。提出利用经验模态分解滤波进行改进,然后与未经滤波的ESPRIT算法和PRONY算法进行比较以证明其有效性。仿真结果表明,经验模态分解可实现自适应滤波,且基于经验模态分解滤波的ESPRIT算法的准确性进一步提高。鉴于经验模态分解滤波的自适应性和ESPRIT算法辨识的快速、准确特性,可将此方法用于电力系统SSO在线检测,并为大电网的SSO的监测与研究奠定了基础。

关 键 词:高压直流  次同步振荡  经验模态分解  旋转矢量不变技术参数估计  振荡模态

ESPRIT analysis of subsynchronous oscillation based on the empirical mode decomposition self-adaptive filter
LI Kuan,LI Xing-yuan,HU Nan,ZHAO Rui,MU Zi-long. ESPRIT analysis of subsynchronous oscillation based on the empirical mode decomposition self-adaptive filter[J]. Power System Protection and Control, 2012, 0(13): 18-23
Authors:LI Kuan  LI Xing-yuan  HU Nan  ZHAO Rui  MU Zi-long
Affiliation:(School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China)
Abstract:Estimation of signal parameters via rotational invariance techniques(ESPRIT)can be used to identify subsynchronous oscillation. However,this method can’t identify mode parameter efficiently in the noise. This paper uses the empirical mode decomposition (EMD) method to filter the noise before the parameters are identified. And then, the improved ESPRIT is compared with the non-filtered ESPRIT and the PRONY algorithm in order to prove its availability. Simulation results show that using empirical mode decomposition, self-adaptive filter can be realized and the veracity is improved. In consideration of the self-adaptibility of EMD and the speediness and accuracy of ESPRIT identification, the proposed method can be applied to on-line detection of subsynchronous oscillation (SSO), laying a foundation for the monitor and research of SSO of large system.
Keywords:high voltage direct current  subsynchronous oscillation  empirical mode decomposition  ESPRIT  oscillation mode
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号