首页 | 本学科首页   官方微博 | 高级检索  
     


Fault-free Hamiltonian cycles in faulty arrangement graphs
Authors:Sun-Yuan Hsieh Gen-Huey Chen Chin-Wen Ho
Affiliation:Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei;
Abstract:The arrangement graph An,k, which is a generalization of the star graph (n-k=1), presents more flexibility than the star graph in adjusting the major design parameters: number of nodes, degree, and diameter. Previously, the arrangement graph has proved Hamiltonian. In this paper, we further show that the arrangement graph remains Hamiltonian even if it is faulty. Let |Fe| and |Fv| denote the numbers of edge faults and vertex faults, respectively. We show that An,k is Hamiltonian when 1) (k=2 and n-k⩾4, or k⩾3 and n-k⩾4+[k/2]), and |Fe|⩽k(n-k)-2, or 2) k⩾2, n-k⩾2+[k/2], and |Fe|⩽k(n-k-3)-1, or 3) k⩾2, n-k⩾3, and |Fe |⩽k, or 4) n-k⩾3 and |Fv|⩽n-3, or 5) n-k⩾3 and |Fv|+|Fe|⩽k. Besides, for An,k with n-k=2, we construct a cycle of length at least 1) [n!/(n-k!)]-2 if |Fe|⩽k-1, or 2) [n!/(n-k)!]-|Fv |-2(k-1) if |Fv|⩽k-1, or 3) [n!/(n-k)!]-|Fv |-2(k-1) if |Fe|+|Fv|⩽k-1, where [n!/(n-k)!] is the number of nodes in An,k
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号