首页 | 本学科首页   官方微博 | 高级检索  
     


Task scheduling using NSGA II with fuzzy adaptive operators for computational grids
Authors:Reza Salimi  Homayun Motameni  Hesam Omranpour
Affiliation:1. College of Computer Science, Tabari University of Babol, Iran;2. Department of Computer Engineering, Islamic Azad University, Sari Branch, Sari, Iran
Abstract:Scheduling algorithms have an essential role in computational grids for managing jobs, and assigning them to appropriate resources. An efficient task scheduling algorithm can achieve minimum execution time and maximum resource utilization by providing the load balance between resources in the grid. The superiority of genetic algorithm in the scheduling of tasks has been proven in the literature. In this paper, we improve the famous multi-objective genetic algorithm known as NSGA-II using fuzzy operators to improve quality and performance of task scheduling in the market-based grid environment. Load balancing, Makespan and Price are three important objectives for multi-objective optimization in the task scheduling problem in the grid. Grid users do not attend load balancing in making decision, so it is desirable that all solutions have good load balancing. Thus to decrease computation and ease decision making through the users, we should consider and improve the load balancing problem in the task scheduling indirectly using the fuzzy system without implementing the third objective function. We have used fuzzy operators for this purpose and more quality and variety in Pareto-optimal solutions. Three functions are defined to generate inputs for fuzzy systems. Variance of costs, variance of frequency of involved resources in scheduling and variance of genes values are used to determine probabilities of crossover and mutation intelligently. Variance of frequency of involved resources with cooperation of Makespan objective satisfies load balancing objective indirectly. Variance of genes values and variance of costs are used in the mutation fuzzy system to improve diversity and quality of Pareto optimal front. Our method conducts the algorithm towards best and most appropriate solutions with load balancing in less iteration. The obtained results have proved that our innovative algorithm converges to Pareto-optimal solutions faster and with more quality.
Keywords:Task scheduling   Load balancing   Grid computing   Non-dominated sorting genetic algorithm II   Variance-based fuzzy operators   Multi-objective optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号