首页 | 本学科首页   官方微博 | 高级检索  
     


Gas–liquid flows in medium and large vertical pipes
Authors:XY Duan  SCP Cheung  GH Yeoh  JY Tu  E Krepper  D Lucas
Affiliation:aInstitute of Refrigeration and Cryogenic Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China;bSchool of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia;cAustralian Nuclear Science and Technology Organisation, PMB 1, Menai, New South Wales 2234, Australia;dSchool of Mechanical and Manufacturing Engineering, University of New South Wales, New South Wales 2052, Australia;eInstitute of Safety Research, Forschungszentrum Rossendrof e.V., P.O. Box 510 119, 01314 Dresden, Germany
Abstract:Gas–liquid bubbly flows with wide range of bubble sizes are commonly encountered in many industrial gas–liquid flow systems. To assess the performances of two population balance approaches – Average Bubble Number Density (ABND) and Inhomogeneous MUlti-SIze-Group (MUSIG) models – in tracking the changes of gas volume fraction and bubble size distribution under complex flow conditions, numerical studies have been performed to validate predictions from both models against experimental data of Lucas et al. (2005) and Prasser et al. (2007) measured in the Forschungszentrum Dresden-Rossendorf FZD facility. These experiments have been strategically chosen because of flow conditions yielding opposite trend of bubble size evolution, which provided the means of carrying out a thorough examination of existing bubble coalescence and break-up kernels. In general, predictions of both models were in good agreement with experimental data. The encouraging results demonstrated the capability of both models in capturing the dynamical changes of bubbles size due to bubble interactions and the transition from “wall peak” to “core peak” gas volume fraction profiles caused by the presence of small and large bubbles. Predictions of the inhomogeneous MUSIG model appeared marginally superior to those of ABND model. Nevertheless, through the comparison of axial gas volume fraction and Sauter mean bubble diameter profiles, ABND model may be considered an alternative approach for industrial applications of gas–liquid flow systems.
Keywords:Population balance  Bubble columns  Bubble  Multiphase flow  Coalescence  Break-up
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号