首页 | 本学科首页   官方微博 | 高级检索  
     


Carbon dioxide reforming of methane over nickel catalysts supported on mesoporous MgO
Authors:Lin Li  Luming Zhang  Xiaofeng Shi  Yuhua Zhang  Jinlin Li
Affiliation:1. Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
Abstract:In this paper, ordered mesoporous MgO nanocrystals MgO(M)] were synthesized, and the nickel catalysts supported on MgO(M) were facilely prepared by impregnation method. The obtained Ni/MgO(M) catalysts with advantageous textural properties were investigated as the catalysts for the carbon dioxide reforming of methane reaction. It was found that compared with the Ni/MgO(C) catalyst MgO(C): commercial MgO], the mesoporous pore structure of MgO(M) could effectively limit the growth of the activity metal, and the Ni/MgO(M) catalysts showed high catalytic activities as well as long catalytic stabilities toward this reaction. The results showed that the conversions of CH4 and CO2 were only decreased <5 % after 100 h of reaction at 650 °C. The improved catalytic performance was suggested to be closely associated with both the advantageous structural properties, such as large specific surface area, uniform pore size, and the “confinement effect” of the mesoporous matrixes contributed to stabilize the Ni active sites during the reaction. The carbon species deposited on the spent Ni/MgO(M) catalyst were analysized by TG and Raman, and the results exhibited that the carbon species after 100 h of reaction were mainly active carbon species.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号